|
In geometry, a set is defined to be orthogonally convex if, for every line that is parallel to one of standard basis vectors, the intersection of with is empty, a point, or a single segment. The term "orthogonal" refers to corresponding Cartesian basis and coordinates in Euclidean space, where different basis vectors are perpendicular, as well as corresponding lines. Unlike ordinary convex sets, an orthogonally convex set is not necessarily connected. The orthogonal convex hull of a set is the intersection of all connected orthogonally convex supersets of . These definitions are made by analogy with the classical theory of convexity, in which is convex if, for every line , the intersection of with is empty, a point, or a single segment (interval). Orthogonal convexity restricts the lines for which this property is required to hold, so every convex set is orthogonally convex but not vice versa. For the same reason, the orthogonal convex hull itself is a subset of the convex hull of the same point set. A point belongs to the orthogonal convex hull of if and only if each of the closed axis-aligned orthants having as apex has a nonempty intersection with . The orthogonal convex hull is also known as the rectilinear convex hull, or, in two dimensions, the - convex hull. ==Example== The figure shows a set of 16 points in the plane and the orthogonal convex hull of these points. As can be seen in the figure, the orthogonal convex hull is a polygon with some degenerate edges connecting extreme vertices in each coordinate direction. For a discrete point set such as this one, all orthogonal convex hull edges are horizontal or vertical. In this example, the orthogonal convex hull is connected. 抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Orthogonal convex hull」の詳細全文を読む スポンサード リンク
|